神经激肽1受体拮抗剂联合5-羟色胺3受体拮抗剂、地塞米松预防HEC相关性恶心呕吐的有效性预测模型研究
x

请在关注微信后,向客服人员索取文件

篇名: 神经激肽1受体拮抗剂联合5-羟色胺3受体拮抗剂、地塞米松预防HEC相关性恶心呕吐的有效性预测模型研究
TITLE: Study on the predictive model for the efficacy of neurokinin-1 receptor antagonists combined with 5-hydroxytryp-tamine 3 receptor antagonists and dexamethasone for preventing nausea and vomiting induced by highly emetogenic chemotherapy
摘要: 目的 构建一种基于可解释深度学习的预测模型,用于评估三联止吐方案(神经激肽1受体拮抗剂+5-羟色胺3受体拮抗剂+地塞米松)预防高致吐性化疗(HEC)相关性恶心呕吐的有效性。方法回顾性收集2018年1月至2022年12月就诊于天津医科大学总医院肿瘤科接受HEC且采用三联止吐方案的癌症患者的临床数据,整合人口学、临床及代谢等相关变量,数据预处理后,分别采用深度随机森林和全连接神经网络2种深度学习算法以及4种机器学习算法(支持向量机、分类提升、随机森林、决策树)构建预测模型,并进行模型性能评估和模型可解释性分析。结果6种模型中,深度随机森林模型在测试集中表现出最优预测性能,受试者工作特征曲线下面积为0.850,准确率为0.911,精确率为0.805,召回率为0.783,F1值为0.793,Brier评分为0.075。该模型可解释性分析结果表明,肌酐清除率(Ccr)为关键预测因子,低Ccr水平、女性、低龄患者、高致吐性药物(特别是含顺铂化疗方案)、存在预期性恶心呕吐与HEC相关性恶心呕吐的发生风险呈正相关。结论深度随机森林模型在预测三联止吐方案预防HEC相关性恶心呕吐的有效性方面表现最优,该模型关键预测因子以Ccr、预期性恶心呕吐、性别、年龄、高致吐性药物为主。
ABSTRACT: OBJECTIVE To construct a predictive model for evaluating the efficacy of a triple antiemetic regimen (neurokinin- 1 receptor antagonist+5-hydroxytryptamine 3 receptor antagonist+dexamethasone) for preventing nausea and vomiting induced by highly emetogenic chemotherapy (HEC) based on interpretable deep learning algorithms. METHODS Clinical data of cancer patients who received HEC and were treated with the standard triple antiemetic regimen in the oncology department of Tianjin Medical University General Hospital from January 2018 to December 2022 were collected retrospectively. Demographic, clinical and metabolism-related variables were integrated. After data pre-processing, two deep learning algorithms (deep random forest and dense neural network) and four machine learning algorithms (support vector machine, categorical boosting, random forest and decision tree) were used to build predictive models. Subsequently, model performance evaluation and model interpretability analysis were conducted. RESULTS Among the six candidate models, the deep random forest model demonstrated the best predictive performance on the test set, with an area under the receiver operating characteristic curve of 0.850, an accuracy of 0.911, a precision of 0.805, a recall of 0.783, an F1 score of 0.793, and a Brier score of 0.075. Interpretability analysis revealed that creatinine clearance rate (Ccr) was the key predictive factor, and low Ccr levels, female gender, younger age, highly emetogenic drugs (particularly cisplatin-containing chemotherapy regimens), and anticipatory nausea and vomiting were positively correlated with the risk of HEC-related nausea and vomiting. CONCLUSIONS The deep random forest model exhibits the best performance in predicting the efficacy of triple antiemetic regimen for preventing HEC-related nausea and vomiting. The key predictors in this model primarily include Ccr,anticipatory nausea and vomiting, gender, age, and highly emetogenic drugs.
期刊: 2026年第37卷第02期
作者: 张靖悦;张涵煦;杨翀;孙银娟;钟殿胜;张琳琳;袁恒杰
AUTHORS: ZHANG Jingyue, ZHANG Hanxu,YANG Chong,SUN Yinjuan,ZHONG Diansheng,ZHANG Linlin,YUAN Hengjie
关键字: 高致吐性化疗;化疗相关性恶心呕吐;神经激肽1受体拮抗剂;5-羟色胺3受体拮抗剂;地塞米松;预测模型
KEYWORDS: highly emetogenic chemotherapy; chemotherapy-induced nausea and vomiting; neurokinin-1 receptor antagonist; 5-
阅读数: 7 次
本月下载数: 0 次

* 注:未经本站明确许可,任何网站不得非法盗链资源下载连接及抄袭本站原创内容资源!在此感谢您的支持与合作!